Computer Graphics III Winter Term 2017 Organization

Jaroslav Křivánek, MFF UK

Jaroslav.Krivanek@mff.cuni.cz

Contents and form

Advanced 3D computer graphics

- Loosely follows-up on Computer Graphics II (NPGR004)
 - Assumes knowledge of ray tracing
- Main topic
 - Realistic image synthesis
 - Monte Carlo quadrature
- $\mathbf{2}/\mathbf{2} \mathbf{C} + \mathbf{E}\mathbf{x}$
 - Lecture once a week
 - Labs follow the lecture in SU1

Lecture overview 1/2

- Physical and mathematics fundamentals of image synthesis
 - Light, radiometry, light reflection, rendering equation.
- Monte Carlo integration
 - Statistical estimators and their properties, variance reduction techniques, combined estimators.
- Solution of the rendering equation via MC
 - Path tracing

Lecture overview 2/2

Advanced image synthesis methods

 Bidirectional path tracing, photon mapping, irradiance caching, virtual point lights, Metropolis light transport, ...

Labs

- Pen-and-paper exercises on the material from lectures (solution of problems)
- Programming assignments
- Student's presentation of scientific papers

Evaluation – Points

Programming assignments

- **Max 45 pts** altogether for the assignments
- Penalty of 50% pts for each week of delay in delivering any assignment
- Extra points can be gained for extended assignments (max 10 pts)
 - Serves to compensate for loss of points
 - Altogether, max 55 pts from the assignments (including the extra points)

Paper presentation

- Max 10 pts
- Final oral exam
 - □ 0 45 pts

Evaluation

■ 1 (výborně) 86 – 100 pts

■ 2 (velmi dobře): 71 – 85 pts

■ 3 (dobře): 51 – 70 pts

■ 4 (Fail, nevyhověl/a): o – 50 pts

 In order to pass, students must obtain at least 50% of points for each item on the previous slide (including the final oral exam)

Final examination

- Oral
- Three questions in total
 - □ **Two questions** on the material covered in the lectures
 - Randomly selected from a list posted on the class web page
 - One question = discussion of a scientific paper
 - a) Students choose three papers during semester
 - ☐ The paper topic should be related to realistic rendering
 - Great source: http://kesen.realtimerendering.com/
 - b) I approve the students' paper choice
 - c) At the exam, I pick one of the three and the student explains what the paper is about

Literature

- M. Pharr, G. Humphreys: Physically-based Rendering: From Theory to Implementation, 2nd ed. Morgan Kaufmann, 2010.
- M. Cohen, J. Wallace: Radiosity and Realistic Image Synthesis, Academic Press, 1993. (Kapitola 1-2)
- E. Veach: *Robust Monte Carlo Methods for Light Transport simulation*, Ph.D. Thesis, Stanform University, 1998.
- P. Dutré, Global Illumination Compendium, <u>http://people.cs.kuleuven.be/~philip.dutre/GI/</u>

ASSIGNMENT 1

Assignment 1

- Max 2 students together
- 10 pts for delivering the work
- 50% down for each week of delay
- Extra points:
 - 5 pts for the best rendering
 - 4 for the 2nd best
 - □ 3 for the 3rd best
 - 2 for the 4th best
 - 1 for the 5th best
- Due date: Wed Oct 18th

Assignment 1

- Install 3ds max, edu version
 - https://www.autodesk.com/education/free-software/3dsmax
 - Lear basics of 3ds max from the edu videos shipped
- Install demo version of Corona renderer
 - https://corona-renderer.com/download
 - Lean the basics of rendering with Corona
 - <u>https://corona-renderer.com/resources/tutorials</u>
- (you may also use Cinema4D & Corona for C4D)

Assignment 1

- Create & render your own scene
 - Inspiration: https://corona-renderer.com/gallery
 - Ok to download resources from 3rd parties
 - https://evermotion.org/
 - https://www.turbosquid.com/
 - Ok to use Corona material library
 - Shipped with Corona 1.7
 - Or download from:
 https://corona-renderer.com/resources/materials

Assignment 1 – requirements

- Show a wide variety of materials (at lease 10)
- **Lights:** Use all of the following: HDRI lighting, Corona sun, and a regular light
- Render elements: break your rendering down to direct / indirect / diffuse / reflections elements (passes) so you see what contributions make up the final image
- Show the use of **denoising**
- Figure out for yourself what makes rendering slow (what kind of material / light combinations, lights close to geometry etc.)